Description

The AP2310 uses advanced trench technology to provide excellent $\mathrm{R}_{\mathrm{DS}\left(\mathrm{ON}^{\prime}\right)}$, low gate charge and operation with gate voltages as low as 2.5 V . This device is suitable for use as a Battery protection or in other switching application.

General Features

- $\mathrm{V}_{\mathrm{DS}}=60 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3 \mathrm{~A}$
$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}<90 \mathrm{~m} \Omega @ \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$
$R_{D S(O N)}<120 \mathrm{~m} \Omega @ V_{G S}=4.5 \mathrm{~V}$
- High power and current handing capability
- Lead free product is acquired
- Surface mount package

Application

- Battery switch
- DC/DC converter

Schematic Diagram

Marking and Pin Assignment

SOT-23 -3L Top View

Absolute Maximum Ratings (TA=25 ${ }^{\circ}$ Cunless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	$V_{D S}$	60	V
Gate-Source Voltage	$\mathrm{V}_{G S}$	± 20	V
Drain Current-Continuous	I_{D}	3	A
Drain Current-Pulsed (Note 1)	I_{DM}	10	A
Maximum Power Dissipation	P_{D}	1.7	W
Operating Junction and Storage Temperature Range	$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {STG }}$	-55 To 150	${ }^{\circ} \mathrm{C}$

Thermal Characteristic

Thermal Resistance,Junction-to-Ambient (Note 2)	R $_{\theta \mathrm{JA}}$	73.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics (TA=25 ${ }^{\circ}$ Cunless otherwise noted)

| Parameter | Symbol | Condition | Min | Typ | Max | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Off Characteristics | | | | | | |
| Drain-Source Breakdown Voltage | $\mathrm{B} V_{D S S}$ | $\mathrm{~V}_{G S}=0 \mathrm{~V} \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$ | 60 | 65 | - | V |
| Zero Gate Voltage Drain Current | $\mathrm{I}_{\mathrm{DSS}}$ | $\mathrm{V}_{\mathrm{DS}}=60 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$ | - | - | 1 | $\mu \mathrm{~A}$ |

N-Channel Power MOSFET

Gate-Body Leakage Current	$\mathrm{I}_{\text {gss }}$	$V_{G S}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	-	-	± 100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS} \text { (th) }}$	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{l}_{\mathrm{D}}=250 \mu \mathrm{~A}$	0.8	1.1	1.4	V
Drain-Source On-State Resistance	$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	$V_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3 \mathrm{~A}$	-	75	90	$\mathrm{m} \Omega$
		$V_{G S}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3 \mathrm{~A}$	-	85	120	$\mathrm{m} \Omega$
Forward Transconductance	gFs	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~A}$	3	-	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	$\mathrm{C}_{\text {lss }}$	$\begin{gathered} \mathrm{V}_{\mathrm{DS}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ \mathrm{~F}=1.0 \mathrm{MHz} \end{gathered}$	-	247	-	PF
Output Capacitance	$\mathrm{C}_{\text {oss }}$		-	34	-	PF
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$		-	19.5	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	$\mathrm{t}_{\mathrm{d}(\mathrm{On})}$	$\begin{gathered} V_{D D}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.5 \mathrm{~A} \\ \mathrm{~V}_{G S}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=1 \Omega \end{gathered}$	-	6	-	nS
Turn-on Rise Time	t_{r}		-	15	-	nS
Turn-Off Delay Time	$\mathrm{t}_{\text {d(off) }}$		-	15	-	nS
Turn-Off Fall Time	t_{f}		-	10	-	nS
Total Gate Charge	Q_{g}	$\begin{gathered} V_{D S}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3 \mathrm{~A}, \\ V_{G S}=4.5 \mathrm{~V} \end{gathered}$	-	6	-	nC
Gate-Source Charge	Q_{gs}		-	1	-	nC
Gate-Drain Charge	$Q_{\text {gd }}$		-	1.3	-	nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	$\mathrm{V}_{\text {SD }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=3 \mathrm{~A}$	-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	3	A

Notes:

1. Repetitive Rating: Pulse width limited by maximum junction temperature.
2. Surface Mounted on FR4 Board, $\mathrm{t} \leq 10 \mathrm{sec}$.
3. Pulse Test: Pulse Width $\leq 300 \mu \mathrm{~s}$, Duty Cycle $\leq 2 \%$.
4. Guaranteed by design, not subject to production

Typical Electrical And Thermal Characteristics

Figure 1:Switching Test Circuit

Figure 3 Power Dissipation

Figure 5 Output Characteristics

Figure 2:Switching Waveforms

Figure 4 Drain Current

Figure 6 Drain-Source On-Resistance

N-Channel Power MOSFET

Vgs Gate-Source Voltage (V)
Figure 7 Transfer Characteristics

Vgs Gate-Source Voltage (V)
Figure 9 Rdson vs Vgs

Figure 11 Gate Charge

Figure 8 Drain-Source On-Resistance

Vds Drain-Source Voltage (V)
Figure 10 Capacitance vs Vds

Vsd Source-Drain Voltage (V)
Figure 12 Source- Drain Diode Forward

N-Channel Power MOSFET

Figure 13 Safe Operation Area

Figure 14 Normalized Maximum Transient Thermal Impedance

