

Feature

- 900V,9 A
 RDS(ON) ≤ 1.3 Ω @ VGS=10V, TYP=0.9Ω
- Fast Switching
- Low ON Resistance(Rdson≤1.3Ω)
- 100% Single Pulse avalanche energy Test
- Rohs compliant

Schematic Diagram

TO-220F

Application

- Switch Mode Power Supply (SMPS)
- Electronic Ballast
- Electronic Transformer

Package Marking and Ordering Information

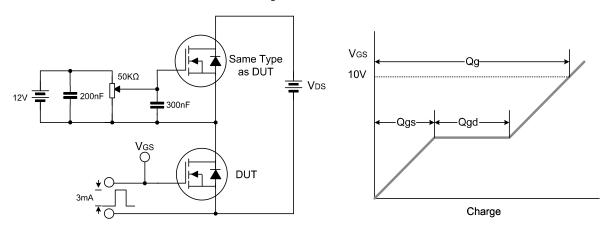
Device Marking	Device	Device Package	Reel Size	Tape width	Quantity (PCS)	
9N90F	AP9N90F	TO-220F	-	-	1000	ĺ

ABSOLUTE MAXIMUM RATINGS (T_J=25℃ unless otherwise noted)

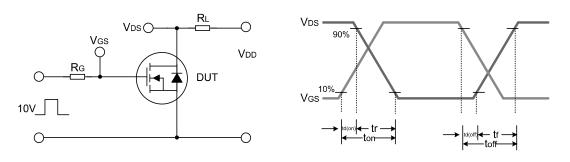
Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	900	V
Gate-Source Voltage	V _{GS}	±30	V
Continuous Drain Current (T _C =25℃)	I _D	9	А
Continuous Drain Current (T _C =100℃)	I _D	5.8	А
Pulsed Drain Current ⁽¹⁾	I _{DM}	36	А
Power Dissipation	P _D	60	W
Single Pulse Avalanche Energy ⁽³⁾	E _{AS}	1000	mJ
Junction to case	Rejc	2.08	°C/W
Junction to Ambient	R _{θJA}	62.5	°C/W
Junction Temperature	TJ	150	$^{\circ}$ C
Storage Temperature	T _{STG}	-55~ +150	${\mathbb C}$

MOSFET ELECTRICAL CHARACTERISTICS(T_J=25℃ unless otherwise noted)

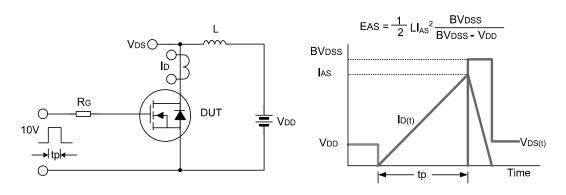
Parameter	Symbol	Test Condition	Min	Туре	Max	Unit
Static Characteristics						
Drain-source breakdown voltage	V _{(BR)DSS}	$V_{GS} = 0V, I_{D} = 250 \mu A$	900	-	-	V
Zero gate voltage drain current	I _{DSS}	V _{DS} =900V, V _{GS} = 0V, Tj=25℃	-	-	1	μA
		V _{DS} =720V, V _{GS} = 0V, Tj=125℃	-	-	10	μA
Gate-body leakage current	I _{GSS}	$V_{GS} = \pm 30 \text{V}, V_{DS} = 0 \text{V}$	-	-	±100	nA
Gate threshold voltage	$V_{GS(th)}$	V _{DS} =V _{GS} , I _D =250μA	2.0	-	4.0	V
Drain-source on-resistance	R _{DS(on)}	V _{GS} =10V, I _D =4.5A	-	0.9	1.3	Ω
Dynamic characteristics						
Input Capacitance	C _{iss}		-	2712	-	pF
Output Capacitance	C _{oss}	V _{DS} =25V, V _{GS} =0V, f =1MHz	-	205	-	
Reverse Transfer Capacitance	C _{rss}		-	18	-	
Forward Transconductance	G_fs	V _{DS} =15V, I _D =4.5A		10		S
Switching characteristics						
Turn-on delay time	t _{d(on)}		-	15	-	ns
Turn-on rise time	t _r	V _{DD} =450V, I _D =9.0A,	-	8	-	
Turn-off delay time	t _{d(off)}	V_{GS} =10V, R_{G} =4.7 Ω	-	69	-	
Turn-off fall time	t _f	7	-	25	-	
Total Gate Charge	Qg	VDQ 450V ID 0.04	-	62	-	
Gate-Source Charge	Qgs	VDS=450V, ID=9.0A,	-	10	-	nC
Gate-Drain Charge	Qgd	VGS=10V	-	21	-	
Source-Drain Diode characteristics	•	•				
Diode Forward voltage	V_{SD}	V _{GS} =0V, I _S =9.0A	-	-	1.5	V
Diode Forward current	Is		-	-	9.0	Α
Body Diode Reverse Recovery Time	trr	VGS=0V, IF=9.0A,		305		ns
Body Diode Reverse Recovery Charge	Qrr	dIF/dt=100A/μs		1.96		uC


Notes:

- 1.Repetitive Rating:pulse width limited by maximum junction temperature.
- 2.ISD =9A,di/dt ≤100A/us,VDD≤BVDS, Start TJ=25°C;
- 3.L=20mH,Rg=25 Ω ,VDD=50V ,IAS=10A , starling TJ=25 $^{\circ}$ C .



Test Circuit


Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveform

Unclamped Inductive Switching Test Circuit & Waveform

DATA SHEET

Typical Performance Characteristics

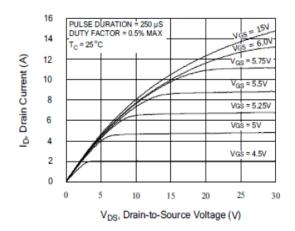


Figure 1 Typical Output Characteristics

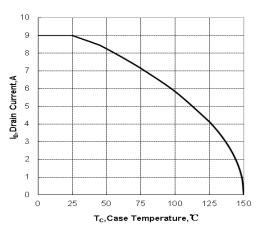


Figure 2 Maximum Continuous Drain Current vs Case Temperature

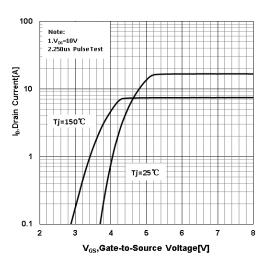


Figure 3 Typical Transfer Characteristics

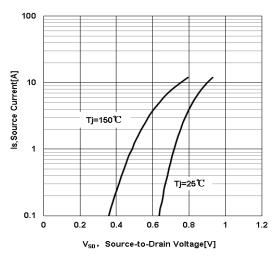


Figure 4 Typical Body Diode Transfer Characteristics

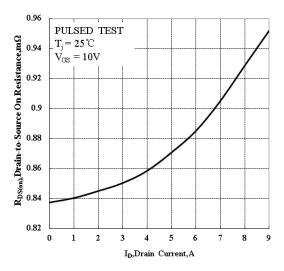


Figure 5 Typical Drain to Source ON Resistance vs Drain Current

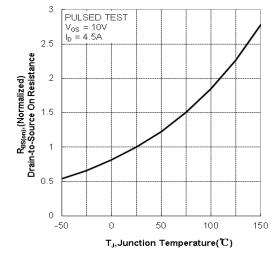
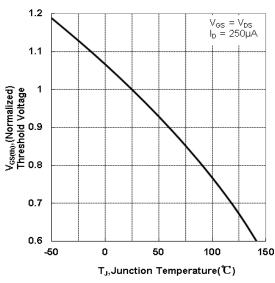



Figure 6 Typical Drian to Source on Resistance vs Junction Temperature

DATA SHEET

Typical Performance Characteristics

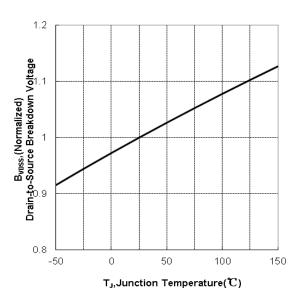


Figure 7 Typical Theshold Voltage vs Junction Temperature

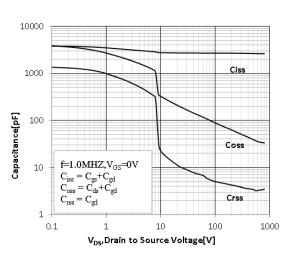


Figure 8 Typical Breakdown Voltage vs Junction Temperature

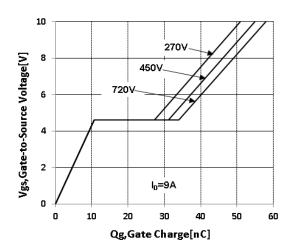


Figure 9 Typical Capacitance vs Drain to Source Voltage

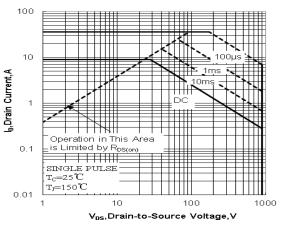


Figure 11 Maximum Forward Bias Safe Operating Area

Figure 10 Typical Gate Charge vs Gate to Source Voltage

Figure 12 Maximum Power dissipation vs Case Temperature

Typical Performance Characteristics

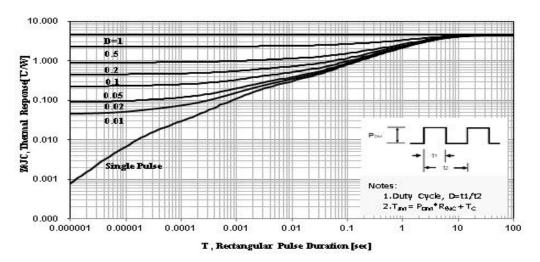
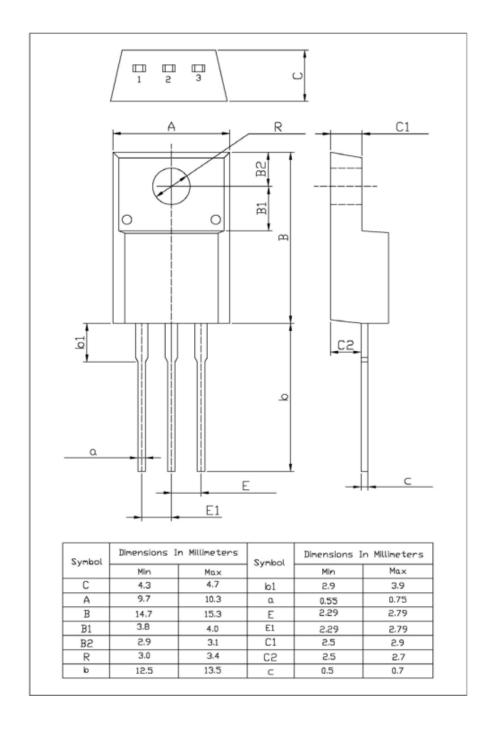



Figure 13 Maximum Effective Thermal Impedance, Junction to Case

Package Dimensions of TO-220F

AP9N90F

Revision History

Revision	Release	Remark
V1.0	2023/11/27	Initial Release

Disclaimer

The information given in this document describes the independent performance of the product, but similar performance is not guaranteed under other working conditions, and cannot be guaranteed when installed with other products or equipment. To achieve the required performance of the product in actual scenarios, the customer should conduct a complete application test to assess the functionality of the product.

Allpower assumes no responsibility for equipment failures result from using products at values that exceed the ratings, operating conditions, or other parameters listed in the product specifications.

The product described in this specification is not applicable for aerospace or other applications which requires high reliability. Customers using or selling these products for use in medical, life-saving, or life-sustaining applications do so at their own risk and agree to fully indemnify.

Due to product or technical improvements, the information described or contained herein may be changed without prior notice.