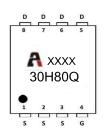
Feature

- 30V,80A
 R_{DS (ON)} <4.8 m Ω @V_{GS}=10V TYP:4.1 m Ω
 R_{DS (ON)} <9.5 m Ω @V_{GS}=4.5V TYP:7.2m Ω
- Advanced Trench Technology
- Lead free product is acquired
- Excellent R _{DS (ON)} and Low Gate Charge


Application

• PWM applications

- Load Switch
- Power management

Schematic Diagram

Marking and pin Assignment

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity (PCS)
30H80Q	AP30H80Q	PDFN3X3	13 inch	-	5000

ABSOLUTE MAXIMUM RATINGS (TJ=25℃ unless otherwise noted)

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	30	V
Gate-Source Voltage	V _{GS}	±20	V
Continuous Drain Current (Tc =25°C)	ID	80	A
Continuous Drain Current (Tc =100°C)	ID	56	A
Pulsed Drain Current ⁽¹⁾	I _{DM}	320	А
Single Pulsed Avalanche Energy (2)	E _{AS}	56	mJ
Power Dissipation	PD	46	W
Thermal Resistance from Junction to Ambient	R _{θJC}	2.72	°C /W
Junction Temperature	TJ	150	°C
Storage Temperature	T _{STG}	-55~ +150	°C

MOSFET ELECTRICAL CHARACTERISTICS(TJ=25℃ unless otherwise noted)

Parameter	Symbol	Test Condition	Min	Туре	Max	Unit
Static Characteristics						
Drain-source breakdown voltage	V _{(BR)DSS}	V _{GS} = 0V, I _D =250µA	30	-	-	V
Zero gate voltage drain current	I _{DSS}	V _{DS} =30V, V _{GS} = 0V	-	-	1	μA
Gate-body leakage current	IGSS	V_{GS} =±20V, V_{DS} = 0V	-	-	±100	nA
Gate threshold voltage ⁽³⁾	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250µA	1	1.5	2.5	V
Drain-source on-resistance ⁽³⁾	D	V _{GS} =10V, I _D =30A	-	4.1	4.8	mΩ
	R _{DS(on)}	V _{GS} =4.5V, I _D =20A	-	7.2	9.5	
Dynamic characteristics						
Input Capacitance	C _{iss}	V _{DS} =15V, V _{GS} =0V, f =1MHz	-	1614	-	pF
Output Capacitance	C _{oss}		-	245	-	
Reverse Transfer Capacitance	C _{rss}	-	-	215	-	
Switching characteristics						
Turn-on delay time	t _{d(on)}		-	7.5	-	ns
Turn-on rise time	tr	V _{DD} =15V, I _D =30A,	-	14.5	-	
Turn-off delay time	t _{d(off)}	V _{GS} =10V, R _G =3Ω	-	35.2	-	
Turn-off fall time	t _f		-	9.6	-	
Total Gate Charge	Qg		-	33.7	-	
Gate-Source Charge	Qgs	VDS=15V, ID=30A,	-	8.5	-	nC
Gate-Drain Charge	Qgd	- VGS=10V	-	7.5	-	
Source-Drain Diode characteristics	·		·			
Diode Forward voltage ⁽³⁾	V _{DS}	V _{GS} =0V, I _S =1A	-	-	1.2	V
Diode Forward current ⁽⁴⁾	Is		-	-	70	А

Notes:

1. Repetitive Rating: pulse width limited by maximum junction temperature

2. EAS Condition:T_J=25 $^\circ C$,V_DD=15V,R_G=25 Ω ,L=0.5mH,I_AS=15A

3. Pulse Test: pulse width≤300µs, duty cycle≤2%

4. Surface Mounted on FR4 Board,t≤10 sec

Test Circuit

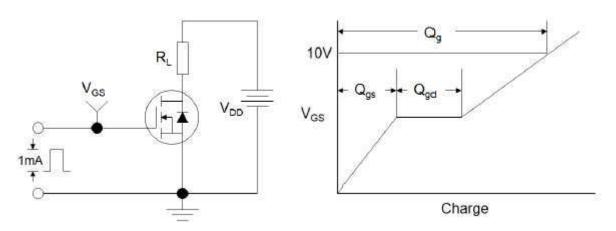


Figure1:Gate Charge Test Circuit & Waveform

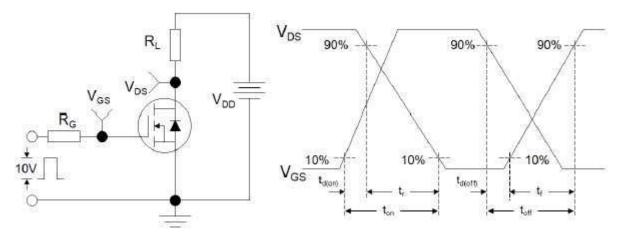


Figure 2: Resistive Switching Test Circuit & Waveforms

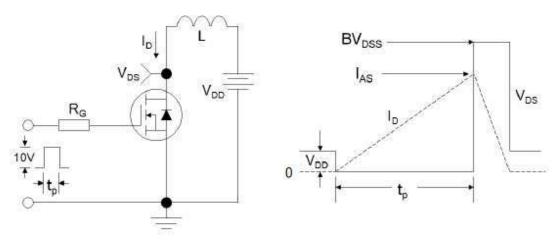
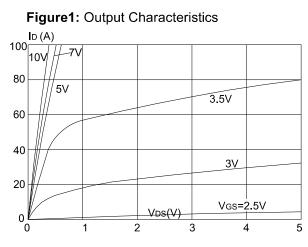
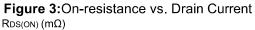
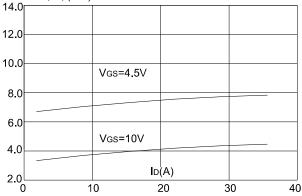
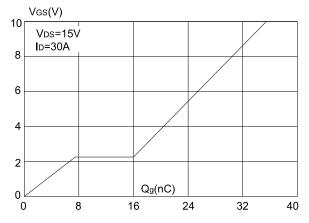






Figure 3:Unclamped Inductive Switching Test Circuit & Waveforms


Typical Performance Characteristics

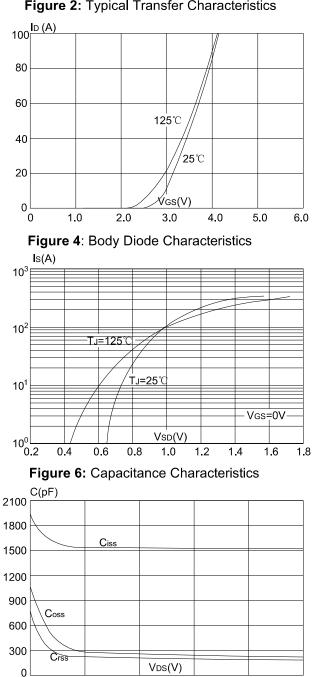


Figure 2: Typical Transfer Characteristics

0

6

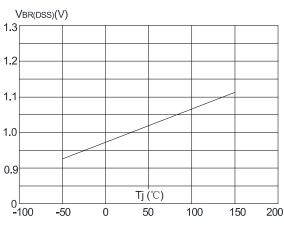
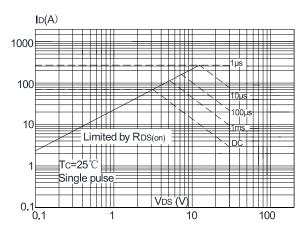
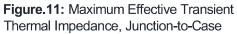
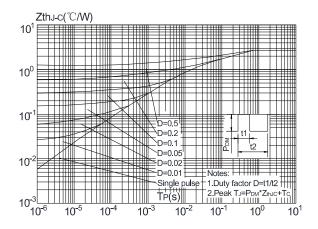
12

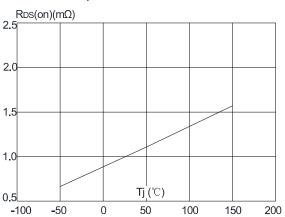
18

24

30

Figure 7: Normalized Breakdown Voltage vs. Junction Temperature


Figure 9: Maximum Safe Operating Area

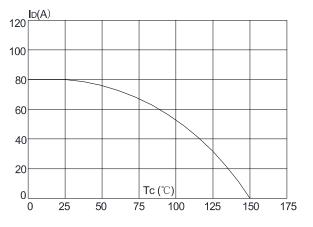
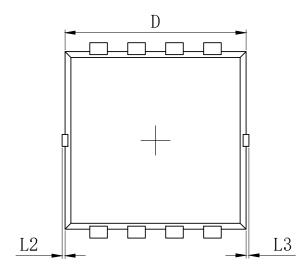
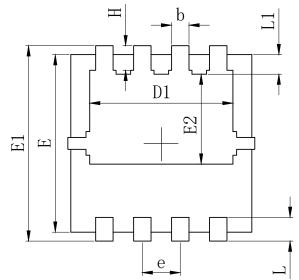
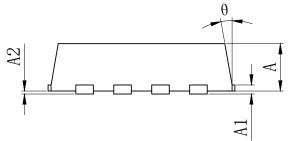


Figure 8: Normalized on Resistance vs. Junction Temperature




Figure 10: Maximum Continuous Drain Current vs. Case Temperature



AIIPOWER DATA SHEET

Package Mechanical Data

	MILLIMETER			
SYMBOL	MIN	Тур.	MAX	
А	0.700	0.800	0.900	
A1	0.152 REF.			
A2	0 [~] 0. 05			
D	3.000	3.100	3.200	
D1	2.300	2.450	2.600	
Е	2.900	3.000	3.100	
E1	3.150	3.300	3.450	
E2	1.320	1.520	1.720	
b	0.200	0.300	0.400	
е	0.550	0.650	0.750	
L	0.300	0.400	0.500	
L1	0.180	0.330	0.480	
L2	0~0.100			
L3	0 [~] 0.100			
Н	0.315	0.415	0.515	
θ	8°	10°	12°	

Revision History

Revision	Release	Remark
V1.0	2024/03/15	Initial Release

Disclaimer

The information given in this document describes the independent performance of the product,but similar performance is not guaranteed under other working conditions,and cannot be guaranteed when installed with other products or equipment. To achieve the required performance of the product in actual scenarios, the customer should conduct a complete application test to assess the functionality of the product.

Allpower assumes no responsibility for equipment failures result from using products at values that exceed the ratings, operating conditions, or other parameters listed in the product specifications.

The product described in this specification is not applicable for aerospace or other applications which

requires high reliability.Customers using or selling these products for use in medical,life-saving,or lifesustaining applications do so at their own risk and agree to fully indemnify.

Due to product or technical improvements, the information described or contained herein may be changed without prior notice.