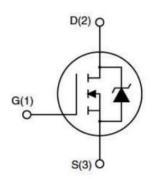


Features


30V,80A

$$\begin{split} R_{DS\;(ON)} <& 4.2 \text{m}\; \Omega \,@V_{GS} = 10 \text{V} \\ R_{DS\;(ON)} <& 7.0 \text{m}\; \Omega \,@V_{GS} = 10 \text{V} \\ \end{split} \qquad \begin{aligned} & \text{TYP:3.6m}\; \Omega \\ & \text{TYP:5.5m}\; \Omega \end{aligned}$$

- Advanced Trench Technology
- High Power and current handing capability
- Lead free product is acquired

- Load Switch
- Synchronous Rectification

Marking and pin Assignment

Package Marking and Ordering Information

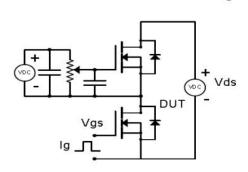
Device Marking	Device	Device Package	Reel Size	Tape width	Quantity (PCS)
040N03G	AP040N03G	PDFN5X6	-	-	5000

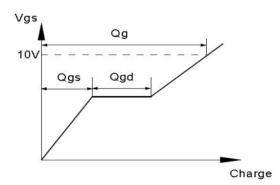
ABSOLUTE MAXIMUM RATINGS (TJ=25℃ unless otherwise noted)

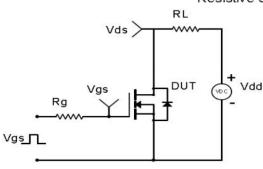
Parameter	Symbol	Value	Unit	
Drain-Source Voltage	V _{DS}	30	V	
Gate-Source Voltage	V _{GS}	±20	V	
Continuous Drain Current (Tc=25°C) ⁽¹⁾	I _D	80	A	
Continuous Drain Current (Tc=100°C)	I _D	48	A	
Pulsed Drain Current (2,3)	I _{DM}	320	А	
Drain Power Dissipation ⁽¹⁾	P _D	30	W	
Single Pulsed Avalanche Energy	E _{AS}	200	mJ	
Thermal Resistance from Junction to Case ⁽¹⁾	R _{θJC}	4.17	°C/W	
Thermal Resistance from Junction to Ambient	RθJA	62.5	°C/W	
Junction Temperature	TJ	-55~ +150	$^{\circ}$ C	
Storage Temperature	T _{STG}	-55~ +150	$^{\circ}$	

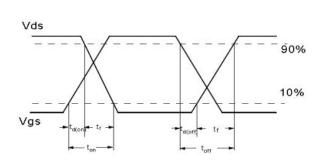
MOSFET ELECTRICAL CHARACTERISTICS(TJ=25℃ unless otherwise noted)

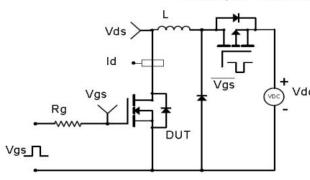
Parameter	Symbol	Test Condition	Min	Туре	Max	Unit		
Static Characteristics								
Drain-source breakdown voltage	V _{(BR)DSS}	V _{GS} = 0V, I _D =250μA	30	-	-	V		
Zero gate voltage drain current	I _{DSS}	V _{DS} =30V, V _{GS} = 0V	-	-	1	μA		
Gate-body leakage current	I _{GSS}	$V_{GS} = \pm 20V$, $V_{DS} = 0V$	-	-	±100	nA		
Gate threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250µA	1	1.5	2	V		
Drain-source on-resistance ⁽⁴⁾	5	V _{GS} =10V, I _D =30A	-	3.6	4.2	0		
Diam-source on-resistance	R _{DS(on)}	V _{GS} =4.5V, I _D =20A	-	5.5	7.0	mΩ		
Dynamic characteristics ⁽⁵⁾	Dynamic characteristics ⁽⁵⁾							
Input Capacitance	C _{iss}		-	1950	2350	pF		
Output Capacitance	Coss	V _{DS} =25V, VGS=0V, f=1MHz	-	320	-			
Reverse Transfer Capacitance	C _{rss}]	-	240	-			
Switching characteristics ⁽⁵⁾								
Turn-on delay time	t _{d(on)}		-	13	-	nS		
Turn-on rise time	t _r	V_{DD} =15V, I_{D} =15A, R_{G} =3.3 Ω ,	-	36	-			
Turn-off delay time	$t_{\sf d(off)}$	V _{GS} =10V	-	43	-			
Turn-off fall time	t _f		-	16	-			
Total Gate Charge	Qg	\/ O4\/ O0A	-	42	84	nC		
Gate-Source Charge	Qgs	V _{DS} =24V, I _D =20A,	-	3.9	-			
Gate-Drain Charge	Qgd	- V _{GS} =10V	-	14	-			
Source-Drain Diode characteristics								
Diode Forward voltage ⁽⁴⁾	V _{SD}	T _J =25℃, V _{GS} =0V, I _S =30A	-	-	1.2	V		
Diode Forward current	Is	T _C =25℃	-	-	80	Α		
Body Diode Reverse Recovery Time	trr	T 05% I 404 4:/-# 4064/	-	16	-	nS		
Body Diode Reverse Recovery Charge	Qrr	- T _J =25°C, I _F =10A,di/dt=100A/us	-	5	-	nC		

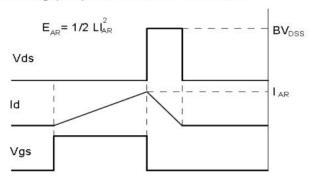

Notes:

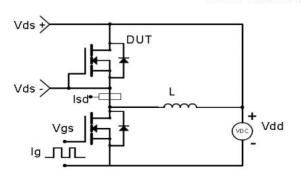

- 1) Surface Mounted on 1 in² pad area, t ≤ 10 sec
- 2) Pulse width ≤ 10µs, duty cycle ≤ 1 %
- 3) Limited by bonding wire
- 4) Pulse width \leq 300 μ s, duty cycle \leq 2%
- 5) Guaranteed by design, not subject to production testing

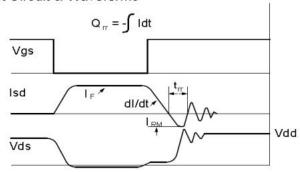

Test Circuit & Waveform


Gate Charge Test Circuit & Waveform




Resistive Switching Test Circuit & Waveforms




Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Typical Characteristics

Figure1: Output Characteristics

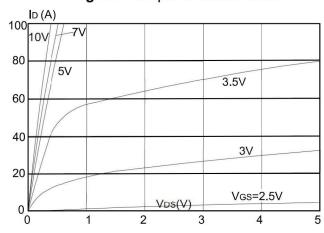


Figure 2: Typical Transfer Characteristics

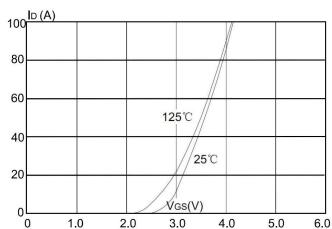


Figure 3:On-resistance vs. Drain Current

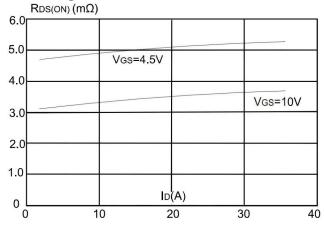


Figure 4: Body Diode Characteristics

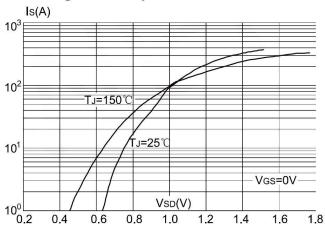
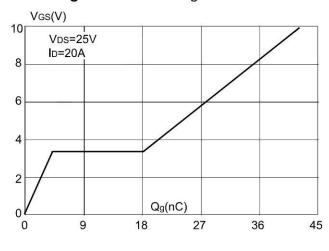
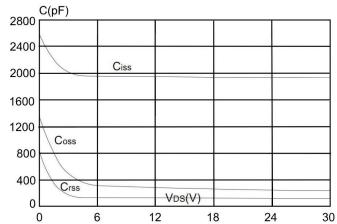
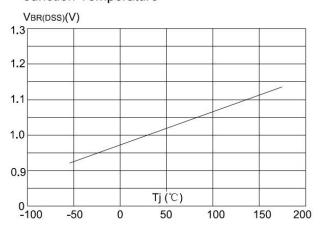
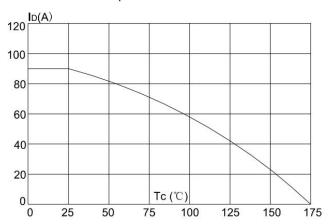


Figure 5: Gate Charge Characteristics


Figure 6: Capacitance Characteristics

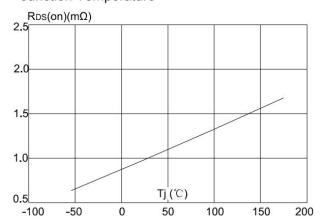
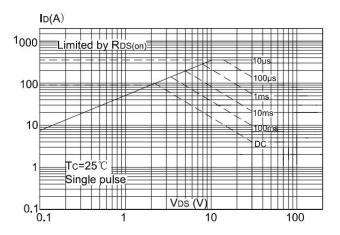
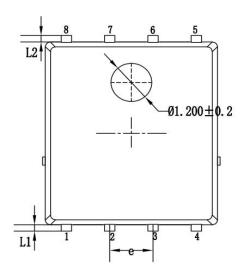


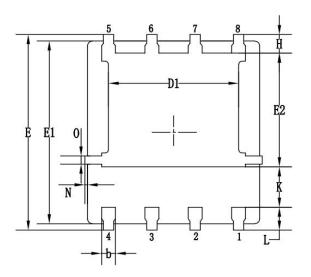
Typical Characteristics

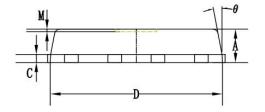
Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

Figure 9: Maximum Continuous Drain Current vs. Case Temperature

Figure 8: Normalized on Resistance vs. Junction Temperature


Figure 10: Maximum Safe Operating Area



PDFN5X6 Package Information

C11-	Millimeters			
Symbols	MIN.	NOM.	MAX.	
A	0.90	1.05	1. 20	
b	0.34	0.40	0. 50	
С	0. 20	0. 25	0.35	
D	4. 80	5. 05	5. 20	
D1	3. 72	3. 82	3. 92	
E	5. 95	6. 15	6. 30	
E1	5. 60	5. 75	5. 90	
E2	3. 47	3. 57	3. 67	
е	1. 27 BSC.			
Н	0.48	0. 58	0.68	
K	1. 17	1. 27	1.37	
L	0.64	0.74	0.84	
L1/L2	0. 20 REF.			
θ	8°	10°	12°	
M	0.08 REF.			
N	0	100	0. 15	
0. 25 REF.			₹.	

Revision History

Revision	Release	Remark	
V1.0	2024/03/16	Initial Release	

Disclaimer

The information given in this document describes the independent performance of the product, but similar performance is not guaranteed under other working conditions, and cannot be guaranteed when installed with other products or equipment. To achieve the required performance of the product in actual scenarios, the customer should conduct a complete application test to assess the functionality of the product.

Allpower assumes no responsibility for equipment failures result from using products at values that exceed the ratings, operating conditions, or other parameters listed in the product specifications.

The product described in this specification is not applicable for aerospace or other applications which

requires high reliability. Customers using or selling these products for use in medical, life-saving, or life-sustaining applications do so at their own risk and agree to fully indemnify.

Due to product or technical improvements, the information described or contained herein may be changed without prior notice.